Posts Tagged design
NASA’s first attempt to land a spacecraft on the moon was the unmanned Ranger 3, launched on January 26, 1962.
THF141214
Ranger 3 carried a 25-inch “Lunar Facsimile Capsule,” developed by Ford Motor Company’s aerospace division, Aeronutronic, located in Newport Beach, California.
THF141217
Aeronutronic described the capsule as “a 300-pound ‘talking ball’ containing a seismometer to record moon quakes, temperature recording devices and other instruments.” The data these instruments collected about surface conditions on the moon would be important for planning later, manned missions.
Testing began in 1960. The capsule would need to withstand the extreme heat of lunar day and the extreme cold of lunar night. A special vacuum test chamber was used, which could be cooled by liquid nitrogen to minus 320 degrees Fahrenheit (minus 196 degrees Celsius).
THF141211
The small capsule was encased in an “Impact Limiter,” a larger ball made from carefully cut segments of balsa wood, which would protect the capsule and its delicate instruments from damage during its rough landing on the moon.
THF700675
The lunar landing sphere was mounted on a retrorocket that would decelerate the spacecraft to 80–100 mph (130–160 kph) as it impacted on the moon.
THF700681
The retrorocket was made from “Spiralloy,” a glass fiber composite. The retrorocket itself weighed only 15 pounds (7 kilograms).
THF700666
Unfortunately, Ranger 3 malfunctioned and flew past the moon on January 28, 1962.
THF700679, detail
Aeronutronic built two more lunar capsules, launched later in 1962 aboard Ranger 4 and Ranger 5. Ranger 4 was destroyed when it crashed into the far side of the moon on April 26, 1962. Ranger 5 missed the moon on October 21, 1962. It joined Ranger 3, trapped in orbit around the sun, where it remains to this day.
Following these failures, the Ranger spacecraft was completely redesigned for later missions in 1964–1965. These spacecraft would no longer carry a lunar landing sphere; instead, they would photograph the moon as they approached. Ranger 7, Ranger 8, and Ranger 9 successfully took over 17,000 thousand high-resolution photographs of the lunar surface.
Jim Orr is Image Services Specialist at The Henry Ford. This post is based on a July 2019 presentation of History Outside the Box.
California, 20th century, 1960s, space, History Outside the Box, Ford Motor Company, design, by Jim Orr
Peggy Hoyt: "Milliner and Dressmaker to the American Aristocracy"
Our current What We Wore exhibit in Henry Ford Museum of American Innovation features garments and hats designed by Peggy Hoyt.
Advertisement for Peggy Hoyt, Inc., 1923. / THF624600
Peggy Hoyt, from “The Right Angle,” The Christy Walsh Syndicate, 1922. Gift of Colleen Cruise Reynolds. / THF626352, detail
Peggy Hoyt began her career making hats as a milliner’s apprentice and went on to become a highly successful fashion designer whose creations would rival those of Paris.
The Early Years
Peggy Hoyt was born Mary Alice Stephens in Saginaw, Michigan, in 1886, to Charles J. Stephens, a partner in a wholesale lumber business, and Carrie Stiff Stephens.
As a child, Mary Alice liked to draw and paint. She had a keen interest in clothes, often designing and making clothing for her large family of paper dolls. When her father’s illness resulted in his inability to resume his business activities, the family’s fortunes declined. A Civil War veteran, Charles Stephens was by 1905 living in the National Home for Disabled Soldiers in Hampton, Virginia, where he died in 1915.
Carrie Stephens moved with her daughter to New York City about 1900. Here, she felt she would have a better chance to get work that offered more than a bare living, as well as provide educational advantages for her daughter, Mary Alice. Though finding work turned out to be harder than anticipated, Carrie Stephens eventually found a job as a comparison shopper for a large department store. In the years following, Carrie Stephens worked her way up to a position as one of the highest salaried European buyers for the department store B. Altman.
In 1905, 18-year-old Mary Alice Stephens married Frank Hoyt in Monterey, Massachusetts—though the couple separated after only 18 months of marriage and Mary Alice then returned to New York City. Life on a 500-acre farm in the Berkshires didn’t suit Mary Alice—she missed the excitement of urban life. She and Frank Hoyt finally divorced in 1911; she kept her married name.
Becoming Peggy Hoyt
In her late teens, Hoyt worked as an apprentice in a Fifth Avenue millinery (hat) shop. By 1910, with a talent for design, a flair for business, and $300 borrowed from her mother, Hoyt established her own millinery shop in tiny quarters on upper Fifth Avenue, a shopping destination lined with luxurious stores. A year later, the business was successful enough to warrant an upgrade. She rented a larger room in the same building and hired an assistant. By 1915, Peggy Hoyt, Inc. was born.
In February 1918, Hoyt married Aubrey Eads—an officer in the American Naval Aviation Detachment who had recently returned after 14 months in France during World War I. Eads became her business partner.
A Leading American Designer
In the late 1910s, Hoyt moved her growing business into the elegant Phillip Rhinelander mansion at 16 East 55th Street in Manhattan, where she added women’s clothing to her offerings. The mansion, located in Manhattan’s Upper East Side shopping area, provided over 27,000 square feet of space with a stately white marble hall and a magnificent stairway. Hoyt transformed the mansion into one of the most exquisite fashion centers in America. The first floor became a reception room, salon, and fitting rooms. The second floor was devoted entirely to millinery. The top floors held workrooms and a lunchroom for employees.
Peggy Hoyt leased the Phillip Rhinelander mansion on at 16 East 55th Street, transforming it into a stunning setting for her increasingly successful salon. Gift of Colleen Cruise Reynolds. / THF120772, THF120770
A few years after she moved to the Rhinelander mansion, Peggy Hoyt ventured into theatrical costume design for a brief time. Her elegant costumes for Henry W. Savage’s revival of The Merry Widow in September 1921 were a huge success. The following year, she created costumes for the Savage musical The Clinging Vine.
Program for The Merry Widow. The operetta ran for 56 performances in fall of 1921 at the Knickerbocker Theatre in New York. Note the credits for Peggy Hoyt at the top of page 33 (you can click through to our Digital Collections to zoom in). / THF624648, THF624630, THF624638
Hoyt quickly became one of the foremost American designers of gowns and millinery. Her designs were creative and unique, employing her signature pastels, rhinestone ornaments, and handkerchief hems. Hoyt designed each of the hundreds of gowns and hats in her shop, taking great pride in her work. For nearly twenty years, Hoyt dressed a small, but exclusive, clientele in every large American city.
Advertisement: "Peggy Hoyt: New York's Smartest Millinery and Dressmaking Establishment," April 1925. / THF624602
Peggy Hoyt discussed the type of garment, color, style, and fabric with her client, and then sketched the designs. Hoyt oversaw the next steps in the workroom, where staff cut and sewed the garment. Clients had their very own dress form, an adjustable mannequin on which Hoyt’s designs came to life. At the client’s next appointment, the garment was taken to the front of the salon for the final fitting.
A Peggy Hoyt Client: Elizabeth Parke Firestone
Elizabeth Parke Firestone, about 1927. Gift of Mrs. Harvey Firestone, Jr. / THF119839
Receipt for Mrs. H.S. Firestone, Jr. from Peggy Hoyt, Inc., 1934. Gift of Martha F. Ford. / THF626330
Elizabeth Parke Firestone of Akron, Ohio—wife of tire magnate Harvey S. Firestone, Jr.—was among the wealthy women who frequented Peggy Hoyt’s salon. Mrs. Firestone traveled to New York, where Hoyt would confer with her client and then create the beautiful garments and hats for Mrs. Firestone shown here.
Evening dress designed by Peggy Hoyt, 1928. Gift of Mrs. Harvey Firestone, Jr. / THF6688
Evening dress designed by Peggy Hoyt, 1928-1929. Gift of Mrs. Harvey Firestone, Jr. / THF6720
Chemise dress designed by Peggy Hoyt, 1929. Gift of Mrs. Harvey Firestone, Jr. / THF6710
Evening dress designed by Peggy Hoyt, 1931. Gift of Mrs. Harvey Firestone, Jr. / THF6731
Cloche designed by Peggy Hoyt, 1920-1935. Gift of Martha Firestone Ford and Anne Firestone Ball. / THF17330
Cloche designed by Peggy Hoyt, 1925-1936. Gift of Mrs. Harvey Firestone, Jr. / THF30500
Picture hat designed by Peggy Hoyt, 1925-1935. Gift of Mrs. Harvey Firestone, Jr. / THF6754
Picture hat designed by Peggy Hoyt, 1926-1936. Gift of Mrs. Harvey Firestone, Jr. / THF6747
An Unhappy Ending
Peggy Hoyt, Inc., box lid, 1925-1935. Gift of Colleen Cruise Reynolds. / THF188547
At its height, Peggy Hoyt, Inc., earned over $1 million annually and had hundreds of employees. Yet Peggy Hoyt, Inc.—and Peggy herself—would not survive the depression of the 1930s as the faltering economy brought down the thriving business.
Peggy Hoyt died by suicide on October 26, 1937 (though her family maintained that her death resulted from pneumonia). Hoyt, who had an intense dislike of personal publicity, had asked her mother and husband to honor her wishes for privacy upon her death. At the request of Hoyt’s employees, her husband did consent to a small service at the Little Church Around the Corner (the Church of the Transfiguration) before Hoyt’s body was brought to Detroit and laid to rest in Elmwood Cemetery.
Peggy Hoyt, Inc., briefly continued after Hoyt’s passing, with her mother and husband maintaining the salon until its bankruptcy and liquidation in 1939–1940.
Jeanine Head Miller is Curator of Domestic Life at The Henry Ford. Many thanks to Stacy McNally, Local History & Genealogy Librarian at the Public Libraries of Saginaw, and Gil Gallagher, curatorial volunteer at The Henry Ford, for their meticulous research assistance on Peggy Hoyt. Many thanks also to Sophia Kloc, Office Administrator for Historical Resources at The Henry Ford, for editorial preparation assistance with this post.
Firestone family, New York, 20th century, 19th century, women's history, What We Wore, Michigan, making, Henry Ford Museum, hats, fashion, Elizabeth Parke Firestone, design, by Jeanine Head Miller
Suits for the Stars: Spacesuits of Yesterday, Today, and Tomorrow
It’s possibly the most recognizable image in all of human history: Buzz Aldrin on the surface of the moon, his left arm drifting up as if checking the time during a stroll through the park.
The photo sticks in the imagination more than any image of sleek rockets on the launchpad or metallic modules landing on an inhospitable world. Perhaps it’s the casual, individual bravado oozing off Aldrin’s puffed-up frame that truly captures the essence of humans pushing past the ultimate boundary: space.
And yet the spacesuit is rarely the star of the human spaceflight epic. Which is a shame, since this was the most intimate component of the engineering endeavor that landed man on the moon 50 years ago—intimate also because the surprising winner of NASA’s spacesuit contract was a spinoff of Playtex, the underwear manufacturer which still makes items from bras to feminine products to this day.
Playtex made everyday women’s girdles like those shown in this ad before making an unlikely jump to producing clothing for space travel to the moon in the 1960s. / Photo courtesy of Wikimedia Commons
“The suits that other companies provided were stiff, they were bulky, they couldn’t fit the narrow confines of the mission parameters,” said Nicholas de Monchaux, professor of architecture at University of California Berkeley’s College of Environmental Design and writer of a deeply researched book called Spacesuit: Fashioning Apollo.
At the core is the idea of the “human factor,” often overlooked by engineers in their quest to reach the lunar surface. The Saturn V rocket and the lunar module were exquisitely engineered, with sharp, clean lines governed by the unchanging forces of physics: thrust, gravity, air resistance. But the same equations are blurred when dealing with the human form. “The human body doesn’t operate from first principles,” said de Monchaux.
In the race to win the initial suit contract, companies such as David Clark Company, which made the Mercury mission spacesuits, and Hamilton Standard, a division of conglomerate United Aircraft, produced concepts informed by their decades-long experience with high-altitude pressure suits. These options proved much more difficult to maneuver than the suit produced by ILC Dover, the Playtex spinoff whose patented “convolutes” included rubber identical to that filling Playtex’s girdle molds, as well as nylon tricot and webbing taken from the supplies feeding its brassiere assembly lines.
The Apollo spacesuit designed by ILC Dover and worn on the moon had 21 layers, 20 of which were created with synthetics made by chemical giant DuPont. Familiar household names like nylon, Lycra, and Teflon were found in various layers, a fact DuPont proudly advertised at the time.
In 1966, events came to a head when a new ILC spacesuit had to compete once more against prototypes from Hamilton Standard and David Clark. Test subjects using the competing suits had trouble moving around, operating switches, and fitting in and out of the mock landing module. Imagine if Aldrin and Neil Armstrong had touched down successfully on the moon only to not fit through the hatch to step on the surface!
Though each competing suit was custom fitted, only the 21-layer ILC Dover soft suit was sewn by hand by a hotshot crew of the best seamstresses taken from Playtex’s sewing floor—eschewing paint-by-numbers engineering in favor of highly personalized, artisanal craftsmanship. Each spacesuit created by the ILC Dover team bore a laminated photograph of the astronaut it belonged to in order to create a connection to the person whom they were literally keeping alive with their craftsmanship.
Arlene Thalene of ILC Dover inspects a spacesuit’s mylar insulation layers. / Photo courtesy of ILC Dover, LP
Their knowledge, gained by fashioning bras and girdles for women’s activewear, proved indispensable to creating a superior product. The material itself was co-opted: “The rubber that made the suit was literally from the same tank that was, originally at least, supplying the girdle-making that had made Playtex’s fortune,” said de Monchaux.
ILC Dover employee Velma Breeding installs a bladder into a boot. / Photo courtesy of ILC Dover, LP
The ILC Dover suit bested the others in official NASA tests, but the systems-engineering bureaucracy of the Apollo program was still skeptical of an untested spinoff holding such a critical contract. When again faced with competition for the last phase of Apollo’s missions (numbers 14-17), the ILC Dover team even resorted to filming a test subject playing football in a pressurized suit for several hours. “And, as became clear on watching the films, the suited subject’s attempts were at the very least equivalent to those of an engineer in shirtsleeves and slacks who joined him on the field,” wrote de Monchaux. “ILC Dover, née Playtex, had won the Apollo game.”
A composite of the final drawings from ILC Dover depicts (from right to left) an Apollo 11 spacesuit’s pressure garment assembly, a suit with its Thermal Micrometeoroid Garment (TMG) attached, and an astronaut wearing a suit with TMG outer cover, gloves, and helmet. Once securely attached to the spacesuit’s inner pressure garment, the multilayered TMG protected astronauts against micrometeoroid impacts, solar and galactic radiation, thermal conduction, and abrasion, and also provided fire protection. / Drawings courtesy of ILC Dover, LP
Dressed for Health
More than 50 years after the Apollo 11 astronauts donned their spacesuits on the moon, I’m sitting in an office at hygiene and health giant Essity’s facility in North Carolina trying to pull on what looks like your average thick knee-high black socks. Kevin Tucker, the global technical innovations manager for a division of Essity, chuckles while I struggle with the fabric as it tightens like a vice. Tucker is in charge of the company’s work with NASA to develop a compression suit for astronauts returning from space. He points out as he puts the socks away that future NASA astronauts will wear something with twice the compression power.
Essity’s bread and butter is making compression garments for people with venous and lymphatic diseases. That’s when the body has issues with pumping fluids against the pull of gravity, causing symptoms from lack of feeling in extremities to loss of consciousness. It’s something we have all experienced to some degree, said Tucker. “If you’re sick in bed with the flu and you’re lying down for a long period of time and you have to go run to the bathroom, the first step you usually take you end up on your nose.”
Astronauts also have trouble with fluid control. When they first get up into space and gravity is no longer a factor, fluids are pumped more into their torso and head. That’s why new arrivals to the International Space Station have puffy faces. After a while, the body adjusts and pumps less to accommodate the lack of gravity. But the problem rears its head again upon re-entry and the rapid reintroduction to gravity. At that point, the body’s fluid pumping is weakened, and astronauts often have to be carried out of the capsule. “This sudden rush of fluid away from the head and heart down into the legs can affect your consciousness,” said Tucker. That’s something his team is trying to change.
To help NASA, Essity is applying its expertise in designing compressive socks, sleeves, and girdles to create a compression suit future astronauts would wear on re-entry to prevent or avoid the sudden redistribution of fluids to the lower extremities upon return to Earth’s gravity. When Tucker lays out the current design on a table, it’s a crisscross of tight black fabric and a few zippers, woven in a way reminiscent of those fancy yoga pants that have sheer patterns.
Health giant Essity is currently working with NASA to create a compression suit that astronauts will wear upon re-entry to Earth. The garments, shown separately here for illustrative purposes, will prevent or avoid the sudden redistribution of fluids to the lower extremities upon return to Earth’s gravity. / Photo courtesy of Essity
It’s slated to be the first layer of gear NASA astronauts will put on as they prepare to splash down—so getting stuck as you pull on the suit is simply not an option. Another “soft” consideration is that the astronauts will have to wear these for hours in a seated, upside-down position, and tests of earlier designs irritated subjects’ bent knees. The newest version of the compression suit comes slightly pre-bent at the joint, making it more comfortable.
The Human Factor and What’s Next
The human body was not meant for space travel, and the soft problems it presents require innovative solutions with intimate knowledge of the human body. Some of those challenges (and ways suits can help) are listed below.
Vacuum: Exposed to the vacuum of space, a body’s fluids would start boiling away as the body puffs up. A spacesuit protects you—but, be warned, it will puff up, too.
Temperature: Outside the International Space Station, the temperature swings wildly from 250 to -250 degrees Fahrenheit. But with no atmosphere to transfer heat or cold, a well-insulated spacesuit keeps you comfy.
Radiation: Above the protection of the Earth’s atmosphere and magnetic field, cosmic radiation is the most consistent health concern. A spacesuit provides very limited protection—as does the space station.
Lack of Gravity: Low or no gravity makes muscles atrophy, bones lose density, and fluids redistribute. NASA is working on it.
Unfortunately, the human body is not always something the engineering culture of rocket scientists takes into account. “We’re still thinking about the engineering and the propulsion systems and the vehicle, but we’re not thinking enough about the pink, squishy things that are in the middle of that vehicle,” said Diana Dayal, who did a year-long apprenticeship at the National Space Biomedical Research Institute (NSBRI). Funded by NASA’s Human Research Program, NSBRI, which closed in 2017, was NASA’s lead partner in space biomedical research and provided hands-on lab opportunities for young scientists, engineers, and physicians such as Dayal to access careers in human spaceflight.
On future, longer space missions, the human factor will be amplified. New challenges will arise from the long stint in low gravity. “The deconditioning of your bones and muscles is going to be an unavoidable problem on a three-year Mars mission,” said Dayal. “How are you supposed to send people to Mars and expect them to set up a habitat?”
Astronaut Neil Armstrong—shown here aboard the Apollo 11 Lunar Module Eagle, the first crewed vehicle to land on the moon—later quipped that his spacesuit was one of the most widely photographed spacecrafts in history. Decades later, he sent a note to the team that designed the spacesuit, complementing it and calling it “tough, reliable and almost cuddly.” You can see the “cuddly” spacesuit worn by Armstrong, held by the Smithsonian National Air and Space Museum, on their collections website. / Photo by NASA / Edwin E. Aldrin Jr.
One of the solutions being explored is enhancing the spacesuit with an exoskeleton—essentially empowering the humans by linking them to a stronger robotic carapace. This is a good idea, but the prototype Dayal saw at NASA’s Johnson Space Center was so large and cumbersome, it was hard to imagine it on an average person.
“It’s so cool that you basically have all this circuitry that simulates nerves, but at the same time, who did you build this for? Who’s going to wear it?” They were questions posed by Dayal’s group, she said, pointing out that current designs lack sufficient modularity to adjust to different body types.
While the lessons learned in developing the soft Apollo spacesuit decades earlier may have to be revisited as we look to longer missions, it’s also an opportunity to push the boundaries of design. “All of your constraints are out the window; everything is a variable,” said Dayal. “If anything, designing for space should help us better design for Earth.”
Fedor Kossakovski is a freelance science writer and producer. This post was adapted from an article in the June–December 2019 issue of The Henry Ford Magazine.
The Henry Ford Magazine, making, women's history, engineering, design, fashion, by Fedor Kossakovski, space
Lincoln’s Century with Ford Motor Company
1928 Lincoln Four-Passenger Coupe Advertising Proof, "Every Lincoln Body is a Custom Creation of Some Master Body Builder" / THF113063
One hundred years ago this month, Henry Ford purchased the Lincoln Motor Company from Henry Leland. The Henry Ford joined in the centennial celebration on our website, where we published a new Popular Research Topic outlining key Lincoln assets from our collections; on Facebook and Twitter, where we shared social posts featuring artifacts from our collections; and on Instagram, where Reference Archivist Kathy Makas shared a Lincoln-related story. Kathy’s story was part of our History Outside the Box monthly series on Instagram, featuring interesting or noteworthy items from our archives.
If you missed the live version of our Instagram story, you can check it out below to learn how Edsel Ford, as president of Lincoln, brought a design eye to the company and how design at Lincoln evolved. You’ll also discover a few of the famous celebrities who owned Lincolns, take a look at some Lincoln publications, and more.
Continue Reading
Ford family, History Outside the Box, Ford Motor Company, Edsel Ford, design, cars, by Kathy Makas, by Ellice Engdahl
Biomimicry: Making Mother Nature Our Muse
In the face of a challenge, a walk is one of the best ways to jump-start imagination and pave a creative path forward. Take that walk in nature, or, better yet, spend a few days in nature without technology, and research shows our problem-solving abilities soar by as much as 50%.
Inventors and problem solvers need a constant supply of potent inspiration. Books and journal articles, as well as brainstorms with mentors, colleagues, and friends, help. However, in many instances our greatest teacher lives right outside our doors. There, we can find knowledge, wisdom, experience, and a solid track record of success. Nature has the answers we need to solve every problem—if only we know where to look and how to ask the right questions.
Illustration by James Round
What Is Biomimicry?
Biomimicry is innovation inspired by nature. Whether we’re working on a challenge related to product development, process generation, policy creation, or organizational design, one of the smartest questions we can ask is: “What would nature do?” Asking this question, and then studying nature to find the answers, is a way to discover new sustainable solutions that solve our design challenges without negatively impacting the planet.
Undoubtedly, biomimicry is best learned by doing. It’s a field that requires us to open our eyes, ears, and hearts as we roll up our sleeves to dig deep (sometimes literally into the dirt) to understand, interpret, and then utilize nature’s design principles to solve the challenges we face in our lives.
“Biomimicry applies strategies from the natural world to solve human design challenges,” said Alexandra Ralevski, Ph.D., director of AskNature at the Biomimicry Institute based in Missoula, Montana. “This is a field that has the power to radically transform any industry.”
Being a Bridge: Janine Benyus and the Biomimicry Institute
With varied fields of expertise, including scientific knowledge, business planning, design thinking, and operations, to name just a few, practitioners of biomimicry serve as the bridge between professional groups like scientists, business managers, policymakers, engineers, and designers, who are often siloed from one another.
If all the world is an orchestra of voices, those who study biomimicry are the conductors making room for each of them, ensuring that they rise, shine, and harmonize together for the benefit of all.
It’s impossible to utter a single word about the theory and practice of biomimicry without paying homage to Janine Benyus, a biologist, author, innovation consultant, and self-proclaimed “nature nerd.” Benyus’ groundbreaking book, Biomimicry: Innovation Inspired by Nature, has made its way onto bookshelves and into the hearts, hands, and minds of problem solvers.
Biomimicry: Innovation Inspired by Nature by Janine M. Benyus. / Photo courtesy of Biomimicry Institute
“We’re awake now,” she said. “And the question is, how do we stay awake to the living world? How do we make the act of asking nature’s advice a normal part of everyday inventing?”
To explore this question and bring passionate and multitalented collaborators into community with one another, Benyus co-founded the nonprofit that would become the Biomimicry Institute in Missoula, Montana.
Over a decade later, the organization continues to provide education, support, and innovation inspiration for anyone and everyone who wants to bring the study and application of nature’s design genius into their work and into their lives.
One of the best ways to illustrate biomimicry’s power is to look at some examples.
Whales and Wind
A trio composed of a marine biologist, a mechanical engineer, and an entrepreneur created the most efficient fans and turbines in the world through inspiration found in humpback whales. On the surface, this may seem like an odd connection. How could humpback whales possibly teach a highly skilled group to build a turbine? It turns out that these whales were experts at the exact function these humans wanted to achieve.
The bumps on a humpback whale’s flipper are nature’s answer to what makes a wind turbine extra efficient. / Illustration by James Round
Humpback whales are among the world’s most agile animals. Though they can reach 16 meters (52 feet) in length and 40 tons in weight, they can lift a large portion of their bodies up out of the ocean and into the air in an acrobatic feat that leaves whale watchers breathless. A single jump or leap (called a breach) requires humpback whales to expend only 0.075% of their daily energy intake. Not only is the breach a stunning display of athleticism, it’s also a remarkably efficient action.
Marine biologist Frank Fish suspected the bumps (called tubercles) on the leading edges of the whale’s flippers held the secret to bending the ocean waters to their will. Working with Fish to study this mystery was engineer Phillip Watts. “I had been working in biomechanics and understood the importance of biomimicry, drawing engineering ideas from evolution,” shared Watts.
Together, Fish and Watts found that humpback whales achieved a rare point of design greatness: The tubercles on their flippers could increase lift while simultaneously reducing drag—a genius combination that gives these magnificent creatures such remarkable agility.
Along with a third collaborator, entrepreneur Stephen Dewar, Fish and Watts decided to model their turbine design on the humpback’s flippers. Not surprisingly, their newly fabricated turbines not only produced supreme performance like the whale’s but were highly efficient. Soon after, the trio’s newly formed corporation, WhalePower, became a leading manufacturer of energy-efficient rotating devices for various applications.
“Because nature had done so much work on this [for us],” said Dewar, “we were able to understand what was possible.”
For the Birds
Transportation aficionados know that Japan’s Shinkansen, known as the bullet train, is one of the world’s finest examples of efficient and elegant design. What many people don’t know is that the Shinkansen has a bird to thank for its performance. Known for its silent diving abilities, the kingfisher can break the water while barely making a sound or a splash to claim its favorite meal—minnows and stickleback fish.
The sleek shape of a certain bird’s beak is nature’s answer to conquering a bullet train’s unwelcome sonic boom. / Illustration by James Round
Shinkansen engineers faced a serious structural challenge while designing the bullet train: It created a sonic boom as it emerged from tunnels at high speeds. One of the team’s engineers, who had observed the kingfisher’s precise diving technique, suggested they mimic the bird’s beak shape in the train’s design. Voila! The sonic boom disappeared.
The bullet train’s unique design also had other unforeseen benefits. Its new nose safely increased travel speeds, lowered fuel consumption, and reduced operating costs.
Nature-Inspired Agriculture Infrastructure
A beehive’s structure, a spider web’s power of attraction, and an ice plant’s water storage system are nature’s answers to creating more sustainable food systems. / Illustration by James Round
To promote local agriculture, NexLoop focuses on creating renewable water infrastructure for sustainable food systems. Its main product, AquaWeb, captures, stores and distributes just the right amount of water at just the right time for local food production.
How does it strike this balance? AquaWeb takes its cues from the efficiency of nature, incorporating learnings from multiple organisms: beehives to create structural strength, spider webs to capture water, ice plants to store water and mycelium to distribute water.
Restoring Nature Using Nature’s Models
Biomimicry also guided the strategy of Nucleário, winner of the Ray of Hope Prize, an initiative of the Biomimicry Institute and the Ray C. Anderson Foundation. Company founders wanted to repopulate the forests of their home country, Brazil, where young tree seedlings face overwhelmingly adverse survival odds. Their roots are choked by grasses while their leaves are devoured by leaf-cutter ants.
Of the small handful of trees that reach their first birthday, 95% don’t live to see their second. It’s these long-shot odds that Nucleário sought to combat.
Like NexLoop, Nucleário combined the designs of several natural models to create its tree seedling pods—from the protective abilities of leaf litter and water accumulation talents of bromeliads (think of a pineapple) to the graceful air dispersal skills of anemocoric seeds.
“Our connection to nature and deep-rooted gratitude for all life inspires and sustains us,” said Bruno Rutman Pagnoncelli, CEO and founder of Nucleário. “We look to nature to guide our decisions, from design to raw material selection and everything in between.”
Combining the natural models that inspired them, Nucleário’s founders have built a planting system that provides protection as well as nutrient and moisture maintenance with less human intervention and tending. Their design is both lightweight and strong, with water chambers that collect and distribute water the same way nature does.
Hooked by Nature
Burdock burrs inspired the creation of Velcro during the mid-20th century.
In 1941, Swiss engineer George de Mestral was hunting and noticed his pants were covered with burdock burrs. He wondered how the seedpods could hold on and took to his microscope, examining the burrs’ “hooks” and the way they clung to fabric. After years of research, de Mestral was granted a U.S. patent in 1955 for what became Velcro, his famous hook-and-loop fastener.
What’s Next in Biomimicry?
“Using nature as a model for sustainability means that we always have a benchmark for our designs,” said AskNature’s Ralevski. “This benchmarking is critical to determine success and improve our iterations.”
A hallmark of nature, and by extension biomimicry, is that there is a progression of continuous improvement over time within the context of a specific situation—which could include the geography, environmental circumstances, and economic situation in which a design solution must exist and operate.
Biomimicry successes in energy management, transportation, and architectural design are spurring design experiments in fields as varied as medicine, materials science, textiles, and urban planning. We’re also beginning to see social science applications of biomimicry in community organizations, economic development, and communication systems.
“Biomimicry’s greatest legacy will be more than a stronger fiber or a new drug,” said Janine Benyus. “It will be gratitude and an ardent desire to protect the genius that surrounds us."
To explore some examples of biomimicry in artifacts from the collections of The Henry Ford, check out this expert set.
This post was adapted from an article by Christa Avampato in the June–December 2020 issue of The Henry Ford Magazine.
Additional Readings:
- Women in Agricultural Work and Research
- Horse-Drawn Vehicles in the Country
- Contradictory Impacts: Mechanizing California’s Tomato Harvest
- Microscope Used by George Washington Carver, circa 1900
aviators, racing, Heroes of the Sky, Henry Ford Museum, flying, engineering, design, by Matt Anderson, airplanes
Sustainable and Inclusive Design: What We’re Reading
Photograph of the offices of William McDonough, sustainable design architect, taken in September 2008 by Michelle Andonian. / THF56407
In every issue of The Henry Ford Magazine, our staff provide reading, listening, and viewing recommendations. In the June-December 2020 issue, we focused on books (and one resolution) that touch on sustainable and/or inclusive design. See what you think of our selections below.
Resolution 70/1—Transforming Our World: The 2030 Agenda for Sustainable Development by the United Nations (UN)
Resolution 70/1 identifies goals essential to the survival of people and the planet. / SDG icons courtesy of the United Nations Department of Public Information
Read this living document that lays out 17 sustainable development goals aimed at mobilizing global efforts to end poverty, foster peace, safeguard the rights and dignity of all people, and protect the planet.
At the heart of sustainable design lies the concept of sustainable development—that the needs of the present should not compromise the resources essential for the future. Sustainable design manages resources with the goal of ensuring their survival for yet unknown needs. This seems essential if the planet is to sustain life in the future.
Yet the idea of sustainable design remains debatable. How do you “value” the sacrifice for future generations? Without quantification, this amounts to a tough sell when others argue in favor of financial gain realized through business practices that exploit natural resources, contribute to the global climate crisis, or line the pockets of a few but leave the majority impoverished.
The United Nations’ call to action, Resolution 70/1—Transforming Our World: The 2030 Agenda for Sustainable Development, identifies 17 goals around which independent nations can plan and implement actions unique to their cultures and resources. The target date, 2030 (now only 10 years away), becomes even more sobering when you consider the high stakes.
-- Debra Reid, Curator of Agriculture and the Environment
Micro Living: 40 Innovative Tiny Houses Equipped for Full-Time Living, in 400 Square Feet or Less by Derek “Deek” Diedricksen
Images courtesy of Micro Living: 40 Innovative Tiny Houses Equipped for Full-Time Living, in 400 Square Feet or Less and Derek “Deek” Diedricksen
This picture-filled paperback shows the range of tiny houses around the United States and rates them by livability. Deek Diedricksen is a connoisseur of tiny houses. For anyone with even a modest interest in sustainable architecture, this is a fun read, even just to browse through the pictures and floor plans.
--Charles Sable, Curator of Decorative Arts
El Deafo by Cece Bell
As an accessibility specialist, I am always looking for books that convey the mindset of people with disabilities. El Deafo is such a book. In this graphic novel, author Cece Bell tells her story of growing up deaf and how she was able to channel her differences to feel like she had superpowers.
This captivating book will leave you thinking about the meaningfulness of acceptance long after you finish it.
--Caroline Braden, Accessibility Specialist
At Day’s Close: Night in Times Past by A. Roger Ekirch
Working alongside some of the world’s most important artifacts related to power and energy, I think often about humanity’s motivations to tame the natural world. The desire to bring light to darkness is an innovation with vast consequences, both environmentally and, as A. Roger Ekirch points out, socially.
His At Day’s Close is an exhaustive look at the social history of darkness and an opportunity for the reader to reflect on possible motivations for the push to illuminate the night.
--Meredith Long, Director of Collections Operations
Books from Our Library Collection
George Washington Carver in a Greenhouse, 1939 / THF213726
Searching for more resources on sustainable design and those innovators past and present who practice it? The Benson Ford Research Center can help connect you with artifacts, articles, and everything in-between The Henry Ford has collected with a sustainability-based theme—some books from our library that fit this topic are listed below. For assistance with access, contact the Research Center.
Merchants of Virtue: Herman Miller and the Making of a Sustainable Company by Bill Birchard
Aluminum Upcycled: Sustainable Design in Historical Perspective by Carl A. Zimring
Sustainable by Design: Explorations in Theory and Practice by Stuart Walker
Why Design Now? National Design Triennial by Cara McCarty, Ellen Lupton, Matilda McQuaid, Cynthia Smith, Andrea Lipps (contributor)
Design with the Other 90%: Cities by Cynthia E. Smith
Textile Visionaries: Innovation and Sustainability in Textile Design by Bradley Quinn
My Work Is That of Conservation: An Environmental Biography of George Washington Carver by Mark D. Hersey
Something New Under the Sun: An Environmental History of the Twentieth-Century World by J.R. McNeill
This post was adapted from an article first published in the June–December 2020 issue of The Henry Ford Magazine.
Every year, The Henry Ford partners with the Industrial Designers Society of America (IDSA) on their International Design Excellence Awards (IDEA). The Henry Ford receives and processes the entries, and then hosts dozens of jurors—including The Henry Ford’s own Vice President of Historical Resources and Chief Curator Marc Greuther. Those products that win become part of the permanent collections of The Henry Ford.
Google Pixel Slate, IDEA bronze award winner in the consumer technology category, 2019. / THF185319
While asking Greuther and IDSA Executive Director Chris Livaudais about the relationship between the two institutions, we also took the opportunity to ask them about the judging process. In addition, Greuther shared the rationale behind some of his “Curator’s Choice” award picks from previous years.
Do you think the concerns of the IDEA jury have shifted over the years? If so, how?
Chris Livaudais: The IDEA jury rotates each year, but it is always composed of designers who are at the top of their field. In many cases, their work is what drives our profession forward and sets the bench other designers follow. As such, the interests of the jury do tend to shift with current trends or conversations within the industry. Sustainability and circular design are huge areas of interest right now, for example. To counter this, IDEA uses the same core judging criteria [see box below] each year. This consistency helps keep things rigorous, while still providing a little room for interpretation and influence from current forces impacting design.
IDEA Judging Criteria |
Design Innovation: How new is the product or service? What critical problem is it solving? How clever is the solution? Does it advance a product category? Benefit to User: How are users’ lives improved through this design? Can they accomplish things not previously possible? Benefit to Client/Brand: What is the business impact of this design? How has leveraging design proven to be a key market differentiator? Benefit to Society: Does the solution consider social and cultural factors? Is it designed/manufactured with sustainable methods/materials? Appropriate Aesthetics: Does the form of the design adequately relate to its use/function? Are the colors/materials/finishes used befitting its purpose? |
From your perspective, what are IDSA jurors looking for?
Marc Greuther: I think over time, I’ve seen two distinct lenses that get played out in the jurying process. One is rooted in “good design is good business” and responsibility. So it’s about utility, user interface, user experience. It’s about effectiveness, about durability. It’s about the use of appropriate materials.
The other has got much more to do with industrial design as a discipline and a certain kind of design purity, and it gets to how well-finished something is. Where are the part lines on there? How do dissimilar materials join in a way that’s pleasing? If you’re in the wrong mindset, you can start looking at it as being incredibly fussy and overly judgmental, but it’s really the design discipline’s roots in craft.
NordicPul: all-weather women's work gloves, IDEA bronze award winner in the student designs category, 2010. / THF154924
Part of what IDSA’s done well is put together a jury that has a wide range of backgrounds. People who know about assistive technology, the medical arena, gamers, and all the rest of it. That’s part of the secret of its effectiveness—ensuring that such a wide range has got a presence.
How do you approach the Curator’s Choice?
Marc Greuther: I’ve never tried to take it on as a kind of contrarian, but I’ve definitely seen things where I’ve felt like, “Holy cow, that’s been disregarded or knocked out of the spotlight for pretty poor reasons, and it needs to be rendered visible.”
I have the great advantage of not having to ask permission for the ones I award. I just try to ensure that my winners are thinking about the use of good materials and the appropriate deployment of objects: their sustainability, their usability, their understandability. It’s an interesting motley crew of things.
IDEA Curator’s Choice Award Selections
Hydropack Self-Hydrating Drink Pouch
Photo courtesy Hydration Technology Innovations LLC
Year: 2011
Description: Water-filtering pouch that becomes a flavored drink rich in electrolytes
Designed by: HTI Water
Why Greuther picked it: “This was for use in disaster situations to purify water. It hadn’t been given the recognition I thought it deserved. There were some designers who said it wasn’t designed. That, to me, was of interest, because sometimes you don’t need to design any more. Why? It was that notion of design almost getting out of the way. It’s about exercising restraint. Less is better in this instance.”
EzyStove
Photo courtesy of McKinsey Design
Year: 2012
Description: Wood-burning stove for use in developing countries as a replacement for cooking over an open fire
Designed by: Ergonomidesign, Mårten Andrén, Håkan Bergkvist, Jonas Dolk, August Michael, Stefan Strandberg and Elisabeth Ramel-Wåhrberg for Creative Entrepreneur Solutions
Why Greuther picked it: “This was about cleaner, more efficient use of existing resources in places where people would be improvising all manner of ways of cooking or heating. It wasn’t trying to be the complete solution. It was partially reliant on charity and the local skills of the users. I liked that it seemed hackable and that people could bootleg this thing. It was about effecting change.”
Sonos SUB
Photo by Dave Lauridsen
Year: 2013
Description: Wireless subwoofer
Designed by: Mieko Kusano and Rob Lambourne of Sonos Inc., and Wai-Loong Lim of Y Studios LLC for Sonos Inc.
Why Greuther picked it: “Sonos had committed themselves to backwards compatibility, and they were building things that had enough redundancy in them that new functionality could play out in them. The SUB sounds really good. It’s a very enigmatic looking thing, and it was designed to work with their earliest equipment. It’s got kind of a Kubrick-like quality to it.”
Pillpack
Photo courtesy of Pillpack
Year: 2014
Description: Delivery and management service for people with multiple medications
Designed by: TJ Parker and Elliot Cohen of PillPack, and Jennifer Sarich-Harvey, Sophy Lee, Katherine Londergan and Gen Suzuki of IDEO
Why Greuther picked it: “This is rooted in my sense that as medications have proliferated as conditions become treatable in one way or another, the complexities of managing those medications almost exponentially increase, and the chances of missing a dose or peculiar interactions increase as well. This was a way of managing that complexity. It’s almost infrastructural.”
Flip Reel by Squiddies
Photo courtesy of Tiller Design
Year: 2015
Description: Handline fishing reel
Designed by: Brandon Liew, Robert Tiller and Lisa Gyecsek of Tiller Design for Squiddies Pty. Ltd.
Why Greuther picked it: “This was an interesting use of new materials. It was very minimal. The irony for me is that I don’t fish. I’ve never fished. I never intend to. But I did like the idea that this was something that could be easily pocketed, casually used. I like that notion of design that just slips into its place, because it’s so usable and so readily apparent in its usage.”
SNOO
Photo by Travis Rathbone
Year: 2018
Description: Robotic bassinet
Designed by: Yves Béhar, Qin Li, Michelle Dawson and fuseproject design team, and Dr. Harvey Karp of Happiest Baby
Why Greuther picked it: “It’s a beautiful object. Part of what I liked about it was that it was robotic. When you look at robotics from a cultural standpoint, it’s almost always very threatening. This is robotic technology, but it’s designed to take care of newborns, something incredibly vulnerable, so the robotic element is appropriately stated and deeply camouflaged. I thought that was an interesting kind of paradox.”
Bernie Brooks is Collections Specialist at The Henry Ford. This post was adapted from an article first published in the June–December 2020 issue of The Henry Ford Magazine.
International Design Excellence Awards, #Behind The Scenes @ The Henry Ford, The Henry Ford Magazine, by Bernie Brooks, design
Lens of Optimism: The Henry Ford and the Industrial Designers Society of America
Every year in the spring, the boxes begin to arrive from all over the world. Just a few at first…. Then more and more, day after day. They are carted from the loading dock down a long hallway and into The Henry Ford’s Main Storage Building. There, they will fill dozens of shelves and tables. In each, a product: computers and smartphones, sporting goods and medical supplies, appliances and tools, all manner of things solving all manner of problems.
Google "Daydream View" virtual reality headset, IDEA gold award winner in the consumer technology category, 2017. / THF174007
These are finalists in the Industrial Designers Society of America’s International Design Excellence Awards (known as IDSA and IDEA, respectively). Over the next several weeks, museum staff will process and sort them into 19 categories ranging from Automotive & Transportation and Service Design to Social Impact. Eventually, 41 esteemed jurors—representing a microcosm of the wide-ranging practices and interests of the industrial design community—descend upon the entries. The best will be declared winners and accessioned into The Henry Ford’s permanent collection, as they have been since 2010.
This ongoing partnership was the result of a 2009 meeting former Chief Historian Christian Øverland and current Vice President of Historical Resources and Chief Curator Marc Greuther from The Henry Ford took with Clive Roux, IDSA’s executive director at the time. At the meeting, Øverland and Greuther pitched the idea that there could be a relationship between The Henry Ford and IDSA based on the latter’s yearly IDEA judging process. The storied professional association agreed. Greuther was asked to select the recipient of a Curator’s Choice Award each year and was eventually given a spot on the jury.
The Henry Ford’s Vice President of Historical Resources and Chief Curator Marc Greuther. / Photo by Roy Ritchie.
Below, Marc Greuther and IDSA’s current executive director, Chris Livaudais, answer some questions. We talked to Greuther about The Henry Ford’s relationship with IDSA, IDEA, and curating through the eyes of designers. Livaudais provides his own perspective on IDSA’s partnership with The Henry Ford, how IDSA helps to promote sustainability in industrial design, and more.
IDSA’s Executive Director Chris Livaudais.
Why did The Henry Ford’s relationship with IDSA come about?
Marc Greuther: It partly came about because of a deeper institutional interest in design. That heightened a lot in the ‘80s under [former president of The Henry Ford] Harold Skramstad, who’d done work with the Eames Office. There was a deeper sense that The Henry Ford had good design holdings that got to the origins of the industrial design profession—and we wanted to continue building those collections.
I think a lot of how I’d looked at it at the time related to the proliferation of designers and design in everyday life. I wanted to ensure that we could stay current but also work more closely with designers, partly to get their take on things but also to make them aware of us as a resource. Unlike many museums, we didn’t just collect spectacular things to put on a plinth. We were quite eager to collect prototypical material and process-related material. It could be drawings, sketches, false starts, dead ends. We were aware that designers could look at that and it would be useful.
Starkey Laboratories S Series behind-the-ear hearing aid, IDEA silver award winner in the medical & scientific products category, 2010. / THF166375
It was based on real mutual benefit. Because design is a discipline that touches people’s lives, IDSA was interested in being more visible, so their work was better understood. Industrial design for many companies was still seen as a styling exercise. But the design discipline had evolved to a point where, no, there’s human factors—the benefits of technologies can be rendered in more usable ways if people’s needs are being better anticipated. Designers are intermediaries for those kinds of processes.
How has the partnership with The Henry Ford benefited IDSA?
Chris Livaudais: IDEA [celebrated] its 40-year anniversary [in 2020], making it one of the oldest design awards competitions around. Our collaboration with The Henry Ford provides an additional level of credibility to the program and helps preserve the legacy of design’s impact on our society. All winning IDEA products can be entered into the museum’s permanent collection, so this is a unique and huge incentive for designers to enter their work into the competition.
Model of "Pico - The Projector Camera," IDEA bronze award winner in the student designs category, 2010. / THF171351
How does the IDSA collaboration relate to and benefit The Henry Ford’s mission and collections?
Marc Greuther: We’ve been able to acquire items that we might not necessarily know about—because of the markets they serve—or even be able to encounter. I think if we can build our collections in a literal sense, we’re always going to be able to get things out in front of the public that serve our mission to inspire people through America’s traditions of ingenuity, resourcefulness, and innovation.
The vast majority of the designers we’ve met are interested in the design discipline as a way of making the world a better place. And that’s a good subtext for our mission. We’re not simply trying to document new or novel things; we’re looking at the deployment of human creativity and imagination.
Stone Cold Systems ice-less vaccine refrigerator, IDEA bronze award winner in the social impact design category, 2018. You can get two curatorial perspectives about this artifact here. / THF185488
One of the jurors once said that one of the things he loves about going to the IDSA conference is that you’re hanging out with optimists. I think that’s another slant on our mission, which is optimistic. It’s that sense that things can be improved. I think that’s one of the best readings of how Henry Ford collected for the institution and how we’ve built off that.
Collecting via IDEA seems to create the potential for incredible contrast between the totally new and untested and the iconic artifacts already in the collection. It allows us to play with that edge, because we’re doing it through an industrial designer’s eyes. That’s why I value some of the earlier smartphones and gadgetry that have come in. You look at it and think, “Wow, I wouldn’t collect that now. That’s such a flash in the pan.” And it’s a good job that I didn’t collect it then with a future perspective of my own, because I would’ve been wrong. But it was the best guess of an industrial designer, and that has value.
LG Electronics "CordZero C5" cordless canister vacuum cleaner, IDEA bronze award winner in the home & bath category, 2015. / THF176286
One of the first exhibits I enjoyed at The Henry Ford when I first visited in 1986 was called Yesterday’s Tomorrows. It was all about past views of what the future would be like. That applies to some of the IDSA materials we’ve got. It’s that notion of “Journalism is the first draft of history,” right? It’s going to get superseded pretty quick, but it’s still got value. Our IDSA collections are the first draft of an industrial designer’s sense of what’s important.
When you’re talking about an institution that has the kind of collections that The Henry Ford has, the relationship with IDSA is an incredible asset. In 10 years, if one IDEA award winner is a huge success, the museum might have the prototype already.
Marc Greuther: Or we might have the very first production model. It gets to the fact that the institution is obviously very much wanting to see things through a lens of innovation, and innovation takes place across all of our collections, but it’s apparent in some more than others, simply because of the nature of what’s going on technologically in the world.
It is interesting to think about how IDEA has grown collections that seem incredibly workaday. If you think about the impact of ergonomics and human factors research into the design of handles for ladles and traditional kitchen utensils, that grows our collection in those areas that seem utterly everyday. That’s where design is an interesting discipline. New materials come along, or new knowledge about the way the body works or doesn’t work. All the work that’s been done by companies like OXO Good Grips is deeply informed by research into arthritis and rheumatism, and just the sheer inappropriateness of so many everyday utensil designs.
OXO SteeL CorkPull, IDEA bronze award winner in the home furnishings category, 2010. / THF166376
As someone who’s been on the jury for many years now, you get these things that come up—brand-spanking-new, out-of-the-box office concepts—and you’ll look at it and say, “Yeah, OK. I saw that in a Robert Propst drawing from 1962.” It’s good to be able to wield that historical perspective and say, “Hey, you know what? That’s been noticed before, and this is how it played out.”
How does IDSA hope to promote the continued growth of sustainable design practices going forward?
Chris Livaudais: IDSA has long been active in promoting responsible and sustainable design practices to the design community. In 2014, for example, we supported the development and distribution of Okala Practitioner, a comprehensive resource for designers on materials and best practices related to the ecological impact and footprint of a given product or service. We also have an Ecodesign special interest section, which allows subject matter experts in this space to connect and generate content for publication throughout IDSA’s networks. It is very important for us as a professional association to advocate for this topic and to show that having responsibly designed products can in fact be positive for our planet, the people who use the products and the bottom line of the business.
Bernie Brooks is Collections Specialist at The Henry Ford. This post was adapted from an article first published in the June–December 2020 issue of The Henry Ford Magazine.
International Design Excellence Awards, The Henry Ford Magazine, design, by Bernie Brooks, #Behind The Scenes @ The Henry Ford
Sidney Houghton: The Later Commissions
Cover of Sidney Houghton Brochure. / THF121214
From Houghton’s reference images in the brochure, we can document many commissions that are lost as well as provide background for some that survive. This post centers on Houghton’s later work for the Fords, and my evaluation of why the relationship ended.
The Dearborn Country Club
Dearborn Country Club in 1925. / THF135797
Dearborn Country Club in 1927. /THF135798
According to Ford historian Ford Bryan in his book, Friends, Families & Forays: Scenes from the Life and Times of Henry Ford, the Dearborn Country Club was created for executives at the Ford Motor Company. By the middle of the 1920s, Ford’s operations were centered in Dearborn, with nearly all the company’s upper echelon working from the Ford Engineering Laboratory or the nearby Ford Rouge Plant. According to Ford Bryan, the idea came from Henry and Clara Ford to provide Dearborn with the same amenities as elite suburbs such as the Grosse Pointes or the northern suburbs. They also wanted their associates and friends to have the best that money could buy. The project was an incentive for Ford executives to remain in Dearborn, but proved to be unprofitable for the company. Further, when Henry Ford tried to impose his wishes against smoking and drinking, the membership essentially ignored him. Because of this, the Fords rarely visited the Club.
Architect Albert Kahn, who famously designed the Rouge Plant, was hired to design the clubhouse, seen above. The building was finished in the fall of 1925 and was designed in the “Old English” or Tudor style, popular in England in the 16th and 17th centuries.
Formal Dance at the Dearborn Country Club, 1931. / THF99871
Dearborn Country Club Chef at Banquet Table, 1931. / THF99875
Light's Golden Jubilee Ushers at the Dearborn Country Club, October 21, 1929. / THF294674
We know through documents that Sidney Houghton worked on the interiors. What we have in the way of documentation is a furnishings plan, but little else. Period photos, such as those above, show the elaborate beamed ceiling in the ballroom designed by Albert Kahn, and the elegant lighting and window treatments, likely provided by Houghton.
Henry Ford Hospital and Clara Ford Nurses Home
Henry Ford Hospital and Clara Ford Nurses Home, 1931. / THF127760
Clara Ford Nurses Home, 1931. / THF127754
Nurses in front of Clara Ford Nurses Home, 1926. / THF117484
One of Henry Ford’s great humanitarian efforts was in founding Henry Ford Hospital in Detroit. It was created in 1915 and in 1917 was turned over to the federal government during World War I for military use. By the middle of the 1920s, the hospital was considered the major medical center in Detroit. In 1925, Clara Ford organized the Henry Ford Hospital School of Nursing, and she funded the building housing it, the Clara Ford Nurses Home, on the hospital campus.
Living Room inside Clara Ford Nurses Home, 1925. / THF127777
Only one photograph of the original interior survives, showing the living room on the first floor. This is absolutely the work of Sidney Houghton, done in what he would call the Elizabethan or Tudor style. The walls are covered with heavy, inlaid panels and the furniture is heavily proportioned, with carved turnings. The wood of choice during this period was oak, which Houghton described as the “Age of Oak.” The upholstered furniture is likewise heavy and large in scale.
Houghton Brochure: A Tudor Interior. / THF121227b
Houghton Brochure, Furniture from the "Age of Oak." / THF121217a
The End of the Relationship
By 1925, Houghton’s commissions were at or nearing completion. After this date, there is an abrupt end to the correspondence between Houghton and the Fords. The only subsequent communications are a telegram from 1938, congratulating the Fords on their 50th wedding anniversary, and a letter dating to 1941, thanking Henry Ford II for his work on supplying aid for Britain during the second World War. While we have no documentation on how the relationship ended, we do have documentation of one artifact that may shed light on this period. In 1925, Houghton gave the Fords a sterling silver model galleon or ship. Perhaps this is a reference to Houghton’s love of sailing. It appears on the cover of the Houghton brochure at the top of this post.
Was this a peace offering from Houghton to the Fords? Or was it a token of generosity from Houghton, a great navigator, to the Fords? We will never know, but it is interesting to contemplate the implications of this extraordinary gift.
I hope you’ve enjoyed my journey through an unknown aspect of the Fords’ life. Researching and writing about Sidney Houghton has been a pleasure.
Charles Sable is Curator of Decorative Arts at The Henry Ford. Many thanks to Sophia Kloc for editorial preparation assistance with this post.
Additional Readings:
- Sidney Houghton: The Fair Lane Rail Car and the Engineering Laboratory Offices
Table, Used as a Writing Desk by Mark Twain, 1830-1860 - Women Design: Peggy Ann Mack
- The Webster Dining Room Reimagined: An Informal Family Dinner
design, healthcare, Detroit, Michigan, Dearborn, Clara Ford, Henry Ford, Sidney Houghton, furnishings, decorative arts, by Charles Sable