Posts Tagged power
Horse Power
Detail, 1882 advertisement showing a three-horse tread power in use. / THF277170
How much horsepower really comes from a horse? While the answer to this may seem obvious, it is complicated. The most complete answers start out with "it depends."
Much of farming is strenuous, tedious, repetitive work. For American farmers, chronic labor shortages made the effort of farm work even more taxing, so they looked for ways to get farm work done with less manpower. Horses and oxen were the main source of power, used for centuries for plowing. Improved farm machinery throughout the 1800s added the power of horses to other activities such as planting, cultivating, and, eventually, mowing and harvesting. Farmers understood the effort required for these tasks in terms of the number of horses needed to pull the equipment, such as one horse for a cultivator, and three or more for a harvester or large plow. Applying the power of horses to farm work helped to steadily increase the productivity of American farms throughout the 1800s.
This 1854 engraving depicted the centuries-old practice of plowing with horses. Throughout the 1800s, farmers increasingly used horses or oxen for other work as well, including planting, cultivating, mowing, and harvesting. / THF118302
Yet horsepower as a measure of power pre-dates the mechanization of the farm. It was developed by James Watt in the 1780s as a way to measure the output of a steam engine. Horsepower was based on his observations of how much work a horse could do in a normal ten-hour day, pulling the sweep arms of the horse-powered pumps that were used to remove water from mines. This worked out to 33,000 foot-pounds per minute, or the effort required to raise 33,000 pounds of water by one foot in one minute.
An 1886 trade catalog depicted Russell & Co.’s “New Massillon” grain thresher powered by both a steam traction engine and a horse-driven sweep power. / THF627487, THF627489
As farmers mechanized barn or farmyard work like threshing, winnowing, corn shelling, and corn grinding, they began to use stationary power sources—either treadmills and sweeps powered by horses, or steam engines. Here, the agricultural idea of horsepower and the industrial idea of horsepower bumped heads. For example, the portable steam engine pictured just below is rated at ten horsepower. It could be used to run the same piece of farm equipment as the two-horse tread power depicted below the steam engine, which used, well, two horses. Some farmers came to use a rule of thumb for farm equipment, calculating that one horse was worth about three horsepower in an engine. Why is this?
This ten-horsepower steam engine (top) could power the same piece of farm equipment as a two-horse tread power (bottom). / THF92184, THF32303
Engine horsepower ratings (and there are many varieties of these) are typically overestimated because they are often calculations of the power delivered to the machine—not how much actually reaches its "business end." For example, they do not account for power losses that occur between the piston and whatever the piston is driving—which can be more like 70% to 90% of the rated horsepower. In addition, those measures are made at the ideal engine speed.
On the other hand, numerous studies have shown that peak horsepower for a horse (sustainable for a few seconds) is as high as 12-15 horsepower. This is based on calculated estimates, as well as observed estimates (recorded in a 1925 study of the Iowa State Fair's horse pull). Over the course of a ten-hour workday, however, the average output of a horse is closer to one horsepower—which coincides with James Watt's original way of describing horsepower.
So how much horsepower comes from a horse? As we see, it depends. If we measure it in an optimal way, as we do with engines, it is as high as 15 horsepower. If we measure it as James Watt did—over the course of a long 10-hour day, horses walking in a circle—it gets down to about one horsepower. Nineteenth-century farmers quickly learned that if they were buying an engine for a task horses had previously performed, they needed an engine rated for three horsepower for every horse they had used for the task.
This post by Jim McCabe, former Collections Manager and Curator at The Henry Ford, originally ran as part of our Pic of the Month series in May 2007. It was updated for the blog by Saige Jedele, Associate Curator, Digital Content.
Additional Readings:
- Microscope Used by George Washington Carver, circa 1900
- Bringing in the Beans: Harvesting a New Commodity
- As Ye Sow So Shall Ye Reap: The Bickford & Huffman Grain Drill
- Oliver Chilled Cast Iron Plow, circa 189
engines, by Saige Jedele, by Jim McCabe, power, agriculture, farms and farming, farming equipment, farm animals
1927 Plymouth Gasoline-Mechanical Locomotive
An unsung hero on our railroad: the 1927 Plymouth Gasoline-Mechanical Locomotive. / THF15920
When you think of the railroad locomotives in Greenfield Village, you probably picture one of our operating steam locomotives, or maybe the diesel-electric that occasionally steps in to pull passenger trains. You might even picture the Atlantic type steam locomotive inside the Detroit, Toledo & Milwaukee Roundhouse that you can walk underneath. But there’s another important member of our fleet that’s easy to overlook: our 1927 Plymouth Gasoline-Mechanical Locomotive.
Even as trucks and highways spread in the first half of the 20th century, industrial America largely still ran on rails. Manufacturers relied on railroads to bring in raw materials and ship out finished goods. The largest factories had extensive railyards filled with cars that needed to be shuttled around. Raw materials used by those factories were supplied by extractive enterprises like mines, quarries, and logging operations that operated internal railroads of their own. Clearly, there was a market for reliable, easy-to-operate locomotives that could be used on these private industrial railroads.
The J.D. Fate Company got into that market in 1914, building diesel and gasoline locomotives under the “Plymouth” brand (named for the company’s hometown of Plymouth, Ohio). Five years later, the firm combined with Root Brothers Company to form the Fate-Root-Heath Company. The newly-merged business manufactured brick and tile-making machinery, hardware and grinders, farm tractors, and—of course—light industrial locomotives.
What made Plymouth locomotives so simple and reliable? Our 1927 example is a gasoline-powered, mechanically driven machine. Its powertrain has more in common with the family car than with a steam locomotive. Steam locomotives burn coal in order to heat water and produce steam. That steam is fed into cylinders, where it pushes pistons that move rods that, in turn, move the driving wheels. Steam locomotives require specialized knowledge and skill to operate.
“Plymouth Gasoline Locomotives”—both the brand and the fuel are clear in this photo. / THF15919
Our Plymouth locomotive is powered by an inline six-cylinder gasoline engine. While it’s larger than what you’d find in a typical car (the Plymouth engine’s displacement is around 1,000 cubic inches), it operates under the same principle. Gasoline is fed into the cylinder and ignited by a spark. The resulting explosion pushes a piston that turns a crankshaft that, via a transmission, turns the driving wheels. And, like an automobile, the Plymouth’s transmission includes a clutch and a four-speed gearbox. If you can drive a car, then you can quickly learn to operate a Plymouth locomotive.
No two industrial railroads were the same, so Plymouth manufactured locomotives in multiple configurations. Track gauge—the width between the rails—was the most important consideration for a Plymouth customer. Standard gauge on American mainline railroads is 4 feet, 8 ½ inches—or 56 ½ total inches. But many industrial operations used less expensive narrow-gauge track. Plymouth built to suit anything from standard gauge down to 18 inches. Furthermore, Plymouth’s spring suspensions and short wheelbases were well suited to rough track with sharp curves.
Over the years, Plymouth also offered different engines and drivetrains. While our locomotive burned gasoline, other Plymouth engines used diesel fuel. (Note that these diesel Plymouths were still mechanically driven. They should not be confused with diesel-electric locomotives, which drive their wheels with electric motors.) In the mid-1940s, Plymouth introduced smooth-running torque converter fluid couplings as an improvement over its earlier mechanical clutches.
Industrial railroads may have been Plymouth’s main customers, but they weren’t the only ones. The company also sold locomotives to temporary railways—those built and used for construction projects like dams, bridges, and highways. Plymouth locomotives were practical, flexible machines that served an important niche market.
Our 1927 Plymouth locomotive earlier in its life, moving coal cars around Detroit’s Mistersky Power Plant, circa 1930. / THF113043
Our Plymouth locomotive was ordered by the Detroit Public Lighting Department—predecessor of today’s DTE Energy—in 1927 at a price of $6,800. It was delivered to the Mistersky Power Plant, a coal-fueled generating station located four miles southwest of downtown Detroit. The 14-ton locomotive spent the next four decades shuttling coal-filled hopper cars around the plant. The Plymouth was retired around 1970 and spent its last years at the plant sitting unused. It came to The Henry Ford in 1980. Today it’s used to move locomotives and cars around the roundhouse and yard in Greenfield Village—just the sort of job a Plymouth was designed to do.
As for the Fate-Root-Heath Company, it was acquired by Banner Industries in the 1960s and renamed Plymouth Locomotive Works. In 1997, Ohio Locomotive Crane bought the firm and, two years later, relocated it to Bucyrus, Ohio, not far from Plymouth. The company no longer builds new locomotives, but spare parts are made under license by other manufacturers. As for the work once done by Plymouth locomotives, while many shippers transitioned to trucks and highways, there are still industries that rely on rail transportation. Many of them now use motorized railcar movers—rubber-tired tractors with auxiliary flanged wheels and railroad couplers. These modern movers offer all the advantages of a Plymouth, but with greater flexibility.
There’s an interesting coda to our Plymouth’s story. Throughout its life at the Mistersky Plant, the locomotive was operated by engineer Charles Vaughn. Born and raised in Indiana, Vaughn moved to Detroit to work on the construction of the Mistersky facility. When that was done, he stayed on to operate the locomotive. Vaughn had no prior experience in railroading but, with an easy-to-run Plymouth, that wasn’t as issue. Mr. Vaughn remained at Mistersky for 45 years before retiring in 1972. In recognition of his long service, Vaughn’s co-workers presented him with the Plymouth’s bell and whistle as parting gifts. (The locomotive’s retirement came before Vaughn’s, so those safety appliances were no longer needed.)
The Plymouth’s original bell, once a retirement gift and now reunited with the locomotive. / THF188367
Charles Vaughn passed away in 1982, but his family held on to the bell and whistle. In 2013, Mr. Vaughn’s family decided to reunite the items with the locomotive. They gifted the bell and whistle to The Henry Ford, and we put them right back onto the Plymouth. We’d like to think Mr. Vaughn would’ve appreciated that thoughtful gesture by his descendants—and the fact that Greenfield Village visitors can still see (and hear) the little locomotive with which he spent so much of his career.
Matt Anderson is Curator of Transportation at The Henry Ford.
Additional Readings:
- Edison Dynamo Used on SS Columbia, 1880
- Electrical Connection
- Pioneers of Electricity
- Electricity? I’ll Take a Pound…
Michigan, Detroit, power, by Matt Anderson, railroads, Greenfield Village
Biomimicry: Making Mother Nature Our Muse
In the face of a challenge, a walk is one of the best ways to jump-start imagination and pave a creative path forward. Take that walk in nature, or, better yet, spend a few days in nature without technology, and research shows our problem-solving abilities soar by as much as 50%.
Inventors and problem solvers need a constant supply of potent inspiration. Books and journal articles, as well as brainstorms with mentors, colleagues, and friends, help. However, in many instances our greatest teacher lives right outside our doors. There, we can find knowledge, wisdom, experience, and a solid track record of success. Nature has the answers we need to solve every problem—if only we know where to look and how to ask the right questions.
Illustration by James Round
What Is Biomimicry?
Biomimicry is innovation inspired by nature. Whether we’re working on a challenge related to product development, process generation, policy creation, or organizational design, one of the smartest questions we can ask is: “What would nature do?” Asking this question, and then studying nature to find the answers, is a way to discover new sustainable solutions that solve our design challenges without negatively impacting the planet.
Undoubtedly, biomimicry is best learned by doing. It’s a field that requires us to open our eyes, ears, and hearts as we roll up our sleeves to dig deep (sometimes literally into the dirt) to understand, interpret, and then utilize nature’s design principles to solve the challenges we face in our lives.
“Biomimicry applies strategies from the natural world to solve human design challenges,” said Alexandra Ralevski, Ph.D., director of AskNature at the Biomimicry Institute based in Missoula, Montana. “This is a field that has the power to radically transform any industry.”
Being a Bridge: Janine Benyus and the Biomimicry Institute
With varied fields of expertise, including scientific knowledge, business planning, design thinking, and operations, to name just a few, practitioners of biomimicry serve as the bridge between professional groups like scientists, business managers, policymakers, engineers, and designers, who are often siloed from one another.
If all the world is an orchestra of voices, those who study biomimicry are the conductors making room for each of them, ensuring that they rise, shine, and harmonize together for the benefit of all.
It’s impossible to utter a single word about the theory and practice of biomimicry without paying homage to Janine Benyus, a biologist, author, innovation consultant, and self-proclaimed “nature nerd.” Benyus’ groundbreaking book, Biomimicry: Innovation Inspired by Nature, has made its way onto bookshelves and into the hearts, hands, and minds of problem solvers.
Biomimicry: Innovation Inspired by Nature by Janine M. Benyus. / Photo courtesy of Biomimicry Institute
“We’re awake now,” she said. “And the question is, how do we stay awake to the living world? How do we make the act of asking nature’s advice a normal part of everyday inventing?”
To explore this question and bring passionate and multitalented collaborators into community with one another, Benyus co-founded the nonprofit that would become the Biomimicry Institute in Missoula, Montana.
Over a decade later, the organization continues to provide education, support, and innovation inspiration for anyone and everyone who wants to bring the study and application of nature’s design genius into their work and into their lives.
One of the best ways to illustrate biomimicry’s power is to look at some examples.
Whales and Wind
A trio composed of a marine biologist, a mechanical engineer, and an entrepreneur created the most efficient fans and turbines in the world through inspiration found in humpback whales. On the surface, this may seem like an odd connection. How could humpback whales possibly teach a highly skilled group to build a turbine? It turns out that these whales were experts at the exact function these humans wanted to achieve.
The bumps on a humpback whale’s flipper are nature’s answer to what makes a wind turbine extra efficient. / Illustration by James Round
Humpback whales are among the world’s most agile animals. Though they can reach 16 meters (52 feet) in length and 40 tons in weight, they can lift a large portion of their bodies up out of the ocean and into the air in an acrobatic feat that leaves whale watchers breathless. A single jump or leap (called a breach) requires humpback whales to expend only 0.075% of their daily energy intake. Not only is the breach a stunning display of athleticism, it’s also a remarkably efficient action.
Marine biologist Frank Fish suspected the bumps (called tubercles) on the leading edges of the whale’s flippers held the secret to bending the ocean waters to their will. Working with Fish to study this mystery was engineer Phillip Watts. “I had been working in biomechanics and understood the importance of biomimicry, drawing engineering ideas from evolution,” shared Watts.
Together, Fish and Watts found that humpback whales achieved a rare point of design greatness: The tubercles on their flippers could increase lift while simultaneously reducing drag—a genius combination that gives these magnificent creatures such remarkable agility.
Along with a third collaborator, entrepreneur Stephen Dewar, Fish and Watts decided to model their turbine design on the humpback’s flippers. Not surprisingly, their newly fabricated turbines not only produced supreme performance like the whale’s but were highly efficient. Soon after, the trio’s newly formed corporation, WhalePower, became a leading manufacturer of energy-efficient rotating devices for various applications.
“Because nature had done so much work on this [for us],” said Dewar, “we were able to understand what was possible.”
For the Birds
Transportation aficionados know that Japan’s Shinkansen, known as the bullet train, is one of the world’s finest examples of efficient and elegant design. What many people don’t know is that the Shinkansen has a bird to thank for its performance. Known for its silent diving abilities, the kingfisher can break the water while barely making a sound or a splash to claim its favorite meal—minnows and stickleback fish.
The sleek shape of a certain bird’s beak is nature’s answer to conquering a bullet train’s unwelcome sonic boom. / Illustration by James Round
Shinkansen engineers faced a serious structural challenge while designing the bullet train: It created a sonic boom as it emerged from tunnels at high speeds. One of the team’s engineers, who had observed the kingfisher’s precise diving technique, suggested they mimic the bird’s beak shape in the train’s design. Voila! The sonic boom disappeared.
The bullet train’s unique design also had other unforeseen benefits. Its new nose safely increased travel speeds, lowered fuel consumption, and reduced operating costs.
Nature-Inspired Agriculture Infrastructure
A beehive’s structure, a spider web’s power of attraction, and an ice plant’s water storage system are nature’s answers to creating more sustainable food systems. / Illustration by James Round
To promote local agriculture, NexLoop focuses on creating renewable water infrastructure for sustainable food systems. Its main product, AquaWeb, captures, stores and distributes just the right amount of water at just the right time for local food production.
How does it strike this balance? AquaWeb takes its cues from the efficiency of nature, incorporating learnings from multiple organisms: beehives to create structural strength, spider webs to capture water, ice plants to store water and mycelium to distribute water.
Restoring Nature Using Nature’s Models
Biomimicry also guided the strategy of Nucleário, winner of the Ray of Hope Prize, an initiative of the Biomimicry Institute and the Ray C. Anderson Foundation. Company founders wanted to repopulate the forests of their home country, Brazil, where young tree seedlings face overwhelmingly adverse survival odds. Their roots are choked by grasses while their leaves are devoured by leaf-cutter ants.
Of the small handful of trees that reach their first birthday, 95% don’t live to see their second. It’s these long-shot odds that Nucleário sought to combat.
Like NexLoop, Nucleário combined the designs of several natural models to create its tree seedling pods—from the protective abilities of leaf litter and water accumulation talents of bromeliads (think of a pineapple) to the graceful air dispersal skills of anemocoric seeds.
“Our connection to nature and deep-rooted gratitude for all life inspires and sustains us,” said Bruno Rutman Pagnoncelli, CEO and founder of Nucleário. “We look to nature to guide our decisions, from design to raw material selection and everything in between.”
Combining the natural models that inspired them, Nucleário’s founders have built a planting system that provides protection as well as nutrient and moisture maintenance with less human intervention and tending. Their design is both lightweight and strong, with water chambers that collect and distribute water the same way nature does.
Hooked by Nature
Burdock burrs inspired the creation of Velcro during the mid-20th century.
In 1941, Swiss engineer George de Mestral was hunting and noticed his pants were covered with burdock burrs. He wondered how the seedpods could hold on and took to his microscope, examining the burrs’ “hooks” and the way they clung to fabric. After years of research, de Mestral was granted a U.S. patent in 1955 for what became Velcro, his famous hook-and-loop fastener.
What’s Next in Biomimicry?
“Using nature as a model for sustainability means that we always have a benchmark for our designs,” said AskNature’s Ralevski. “This benchmarking is critical to determine success and improve our iterations.”
A hallmark of nature, and by extension biomimicry, is that there is a progression of continuous improvement over time within the context of a specific situation—which could include the geography, environmental circumstances, and economic situation in which a design solution must exist and operate.
Biomimicry successes in energy management, transportation, and architectural design are spurring design experiments in fields as varied as medicine, materials science, textiles, and urban planning. We’re also beginning to see social science applications of biomimicry in community organizations, economic development, and communication systems.
“Biomimicry’s greatest legacy will be more than a stronger fiber or a new drug,” said Janine Benyus. “It will be gratitude and an ardent desire to protect the genius that surrounds us."
To explore some examples of biomimicry in artifacts from the collections of The Henry Ford, check out this expert set.
This post was adapted from an article by Christa Avampato in the June–December 2020 issue of The Henry Ford Magazine.
Additional Readings:
- Women in Agricultural Work and Research
- Horse-Drawn Vehicles in the Country
- Contradictory Impacts: Mechanizing California’s Tomato Harvest
- Microscope Used by George Washington Carver, circa 1900
Henry Ford Museum, Driving America, cars, power, alternative fuel vehicles, hybrid cars